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AbstractIn this paper we propose an individualized variable selection
approach to select different relevant variables for different individuals. In
contrast to conventional model selection approaches, the key component of
the new approach is to construct a separation penalty with multi-directional
shrinkages including zero, which facilitates individualized modeling to dis-
tinguish strong signals from noisy ones. As a byproduct, the proposed model
identifies subgroups among which individuals share similar effects, and thus
improves estimation efficiency and personalized prediction accuracy. Another
advantage of the proposed model is that it can incorporate within-subject cor-
relation for longitudinal data. We provide a general theoretical foundation un-
der a double-divergence modeling framework where the number of subjects
and the number of repeated measurements both go to infinity, and therefore
involves high-dimensional individual parameters. In addition, we present the
oracle property for the proposed estimator to ensure its optimal large sample
property. Simulation studies and an application to HIV longitudinal data are
illustrated to compare the new approach to existing penalization methods.

1. Introduction. In recent years there has been a growing demand for exploring individual-
ized modeling, which has broad applications in personalized medicine, personalized education and
personalized marketing. The traditional one-model-fits-the-whole-population approach is unable to
detect important patterns and make personalized predictions for specific individuals. In addition,
the rise of precision medicine and wide-spread electronic health record data also motivate us to
develop more effective personalized treatment. The collection of rich data information makes it
feasible and compelling to utilize individualized models as traditional population models cannot
incorporate heterogeneous effects from different individuals.

In this paper, we consider an individualized model based on a double-divergence framework,
where the number of subjects and the amount of individual information increase together. Conse-
quently, this introduces a diverging number of parameters as the sample size of subjects increases.
In addition, one unique challenge of individualized model selection is that there could be different
relevant or important predictors for different subjects. For instance, different individuals may have
different prognostic factors associated with the same disease. Therefore it is important to develop
new statistical methodology and theory for variable selection and estimation for individualized
modeling.
∗Research is supported in part by National Science Foundation Grants DMS-1308227 and DMS-1415308.
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In the past two decades several penalized model selection methods have been developed, e.g., the
Lasso [27], the smoothly clipped absolute deviation (SCAD) [6], the elastic net [36], the adaptive
Lasso [37], the group Lasso [34], the minimax concave penalty (MCP) [35] and the truncated L1-
penalty (TLP) [25]. However, the above methods are based on a homogeneous model setting which
selects predictors for entire populations. For the individualized model, we can employ traditional
variable selection methods separately for each subject, if there are multiple observations from each
subject as in longitudinal data settings. However, in practice, the number of measurements for
particular individuals could be limited. In addition, it is likely that some variables are invariant for
the same subject, such as demographic information variables, e.g., race and gender, which impose
restrictions and additional obstacles to performing individualized variable selection based on a
standard subject-wise model framework.

Another limitation of applying standard subject-wise variable selection is that it ignores infor-
mation from other subjects which might share similar effects on important predictors of interest.
Moreover, assuming each individual to have unique effects for all covariates is practically unrealis-
tic and computationally infeasible. In contrast, it is more sensible to assume that a subpopulation of
individuals share common effects on selected predictors. In addition, borrowing information from
homogeneous subgroups allows one to increase estimation efficiency and model selection accuracy.

In order to utilize cross-subject information, one may assume that an underlying subpopula-
tion structure depends on unobserved covariates. Existing approaches dealing with clustering on
regression coefficients include mixture modeling for regression, such as the mixture-of-experts
model [12]. However, most model selection approaches under this framework including [22], [20]
and [9] only focus on choosing informative variables to distinguish different subgroups, rather than
on selecting relevant predictors for different individuals.

Alternative approaches to model-based clustering on regression coefficients employ grouping
penalization. For example, [29] propose a fused Lasso by adding an L1-penalty to the pair of adja-
cent coefficients; [3] propose a clustering algorithm for regression by imposing a special octagonal
shrinkage penalty on each pair of coefficients; [24] develop a grouping pursuit algorithm utiliz-
ing the truncated L1-penalty for fusions, and [14] propose a data-driven segmentation method to
explore homogeneous groups with regression. Nevertheless, these are all still under the population-
regression model, and do not allow different individuals to have different features. For the purpose
of subgrouping different individuals, [11] and [17] formulate clustering as a penalized regression
problem by adopting anLp-fusion penalty. [21] and [18] apply non-convex fusion penalties to solve
the bias problem. However, the fusion-type of penalty focuses on subgrouping rather than on model
selection for individual coefficients.

In this paper, we propose an effective individualized model selection approach utilizing multi-
directional shrinkage to select unique relevant variables for different individuals. To the best of our
knowledge, this is a new approach which has not been offered in the existing literature.

Specifically, the proposed penalty allows multiple possible shrinking directions including the
one towards zero, which differs from conventional penalty functions with shrinking direction to-
wards zero only. The consequence of conventional penalty functions is that non-zero signals could
suffer from zero-directional shrinkage, although a variety of penalty methods have been proposed
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to solve the bias problem such as non-concave penalties (e.g., SCAD, MCP and TLP) or adaptive
weights (e.g., adaptive Lasso). Instead we propose a rather different approach which shrinks penal-
ized parameters to one of the multiple directions including zero, where the best shrinking direction
is determined by the data itself. One advantage of the proposed method is that, as long as the can-
didate directions contain the one closest to the truth, the optimal large sample properties such as
the oracle property hold by applying the L1-type of penalty function in each direction.

Another advantage of the proposed method is that it separates different groups of individuals
based on their effects on the same covariates. Indeed, the proposed penalty function is analogous to
an objective function from center-based clustering, which can be viewed as a “separation penalty”
among different individuals. As a byproduct, we identify subgroups with individuals sharing similar
covariate effects, where the centers of subgroups provide a set of estimated shrinking directions.
In addition, through utilizing cross-subject information, the proposed model improves estimation
efficiency and thus enhances personalized prediction power.

Another contribution of this paper is that we lay out a theoretical framework for the double-
divergence individualized model with serial correlation. [33] and [1] established rigorous large
sample theory for the generalized estimating equation [16] (GEE) estimator when the number of
clusters and the cluster size are both large while the dimension of parameters is fixed; and [32]
investigate the GEE model with high-dimensional covariates, but bounded cluster size. In contrast
we establish theoretical properties in a framework when the number of clusters and the cluster size
are both increasing, which involves high-dimensional parameters. We develop asymptotic theory
for the oracle estimator and demonstrate the subpopulation effects on model estimation. In addition,
we show the advantage of utilizing the multi-directional penalty for establishing the oracle property.
Moreover, the proposed method is capable of incorporating within-subject correlation to achieve
efficient estimation.

The paper is organized as follows. Section 2 introduces the model framework and presents the
proposed methodology. Section 3 establishes the theoretical results. Section 4 proposes an effi-
cient algorithm with implementation. Section 5 provides simulation studies. Section 6 illustrates
an application for HIV data. The last section provides concluding remarks and discussion.

2. Model Framework and Methodology.

2.1. The individualized model and subject-wise variable selection. We formulate the prob-
lem under the clustered data setting, where each subject has multiple observations. Let yi =
(yi1, . . . , yimi)

′ be anmi-dimensional response variable for the ith individual,Xi = (xi,1, . . . ,xi,p)
be anmi×p covariates matrix corresponding to individual predictors, andZi = (zi,1, . . . ,zi,q) be
an mi × q covariates matrix corresponding to population-shared predictors, where i = 1, . . . , N .
For ease of notation, we assume that the clustered data is balanced with cluster size mi = m,
although the development of the method does not require a balanced data structure.

We consider a regression model:

yi =Xiβi +Ziα+ εi, i = 1, . . . , N,
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where each individual has its own regression parameter vector βi = (βi1, . . . , βip)
′
p×1, in addi-

tion to the population-shared parameter vector α = (α1, . . . , αq)
′
q×1, and random errors εi =

(εi1, . . . , εim)
′
m×1 independent over different subjects. Within a subject, εij’s (j = 1, . . . ,m) have

mean 0 and variance σ2, and they could be correlated such as in the longitudinal date setting.
In general, to identify unique features for different individuals, we select and estimate the re-

gression parameters βi’s and α through minimizing the penalized objective function

(1) (β̂, α̂) = argmin
β,α

1

2

N∑
i=1

L(yi − µi) +
N∑
i=1

p∑
k=1

h
(1)
λ1

(βik) +

q∑
l=1

h
(2)
λ2

(αl),

where µi(βi,α) = Xiβi + Ziα, L(·) is a loss function, h(1)λ1 (·) and h(2)λ1 (·) are feature-selection
penalties for individualized parameters and population-shared parameters respectively, and λ1, λ2
are the corresponding tuning parameters. The selection of population parameter α is regular and
thus, in this paper, we focus on individualized variable selection. To simplify the model, with a
squared-error loss, the objective function in (1) becomes

(2)
1

2

N∑
i=1

‖ yi −Xiβi −Ziα ‖22 +
N∑
i=1

p∑
k=1

hλN,m(βik),

where ‖ · ‖2 is the Euclidean norm. Then we could employ different penalties hλN,m(·) to adopt
traditional penalized selection approaches (e.g. Lasso, adaptive Lasso, MCP and SCAD).

Without the penalty term hλN,m(·), minimizing (2) leads to the ordinary least squares (OLS) es-
timator. Let β = (β′1, . . . ,β

′
N )′ be the individualized coefficients vector and Y = (y′1, . . . ,y

′
N )′.

We denoteX = diag(X1, . . . ,XN ), a block-diagonal matrix, andZ = (Z ′1, . . . ,Z
′
N )′. The OLS

estimator is
(β̂Sub

′
, α̂Sub

′
)′ = [(X,Z)T (X,Z)]−1(X,Z)TY ,

whose dimension (Np+ q) diverges as subject size N increases.
Note that if there are no population-shared predictors, minimizing (2) is the same as minimizing

the objective function for each individual (subject) separately. We call this approach subject-wise
modeling; however, it only utilizes within-subject information. As a result, this leads to inefficient
estimation and over-fitting of a model, especially when the sample size N is large and m is rela-
tively small.

2.2. The proposed model with multi-directional separation penalty. We propose a novel pe-
nalized variable selection approach by providing multiple shrinking directions for individualized
parameters and utilizing homogeneity information within the subpopulation, which performs pa-
rameter estimation, variable selection and subgrouping simultaneously.

For the kth (k = 1, . . . , p) individualized predictor corresponding to the ith subject, we assume
that there are Gk + 1 subgroups in the population such that

(3) βik =

{
γ
(g)
k , if i ∈ G(g)k , g = 1, . . . , Gk

0, if i ∈ G(0)k

,
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where γ(g)
k (g 6= 0) is an unknown non-zero parameter corresponding to the homogeneous coef-

ficient for the gth subgroup, and G(g)k ’s are the index sets representing the subgroup memberships
with respect to the kth predictor.

For ease of notation, in the following, we focus on the setting where there are two subgroups
with respect to each individualized covariate: the non-zero-coefficient group (βik = γk) and the
zero-coefficient group (βik = 0). We denote γ = (γ1, . . . , γp)

′ as the sub-homogeneous effect
vector. The extension to multiple subgroups is straightforward.

We first consider a model assuming within-subject independence. The extension to correlated
data will be discussed later. The main idea is to encourage grouping of the subjects with similar
effects on specific individualized predictors, by inducing the sub-homogeneous effect γ in the
proposed objective function

(4) QindN,m(β,α,γ) =
1

2

N∑
i=1

‖ yi −Xiβi −Ziα ‖22 +λN,m
N∑
i=1

p∑
k=1

s(βik, γk),

where λN,m is the tuning parameter. Here the key part is the proposed multi-directional separation
penalty (MDSP) function s(βik, γk), defined as

(5) s(βik, γk) = min
(
|βik|, |βik − γk|

)
,

which is a piece-wise L1-penalization function (Figure 1).
The multi-directional penalty term in 4 essentially contains a double-summation providing two

different perspectives of the proposed model. From a subject’s point of view, the penalty term is∑p
k=1 s(βik, γk). In contrast to the traditional penalized variable selection approaches, the pro-

posed MDSP function s(·) provides an alternative shrinking direction in addition to 0. Given γk,
the s(·) penalty can be viewed as shrinking a weak signal of βik towards zero, while pulling the
strong magnitude signals to γk. This reduces the bias for large coefficient estimators introduced
by the Lp-penalty. Figure 1 illustrates the MDSP function s(βik, γk) for a given γk, and Figure 2
provides plots of the thresholding functions of the Lasso and the proposed method. Without loss
of generality, we assume γk > 0. Figure 2 indicates that when βik > γk or βik < 0, |βik| and
|βik − γk| have the same shrinking effect; and when 0 < βik < γk, the two penalties produce
different shrinking directions, which separates strong signals from weak signals.

From the other perspective, for one individualized predictor over different subjects, the MDSP
term is

∑N
i=1 s(βik, γk). Given β′iks, the proposed method leads to subgrouping the coefficients

of individuals, where the separation-penalty term serves the role of centering, similar to K-means
clustering. Compared to pairwise grouping penalization such as the fusion penalty, the center-
based one has less computational cost, with O(Np) penalty terms in contrast to the fusion-type of
clustering containing O(N2p) penalty terms. This also implies that the computational cost of the
proposed approach increases more slowly as the sample size N increases.

In addition, the unknown true effects γk’s can be obtained simultaneously through minimiz-
ing the objective function in (4), where the estimation of γk utilizes information from individuals
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within the subgroup. By pulling the coefficients’ estimators towards the center γ̂k, it allows us to
borrow cross-subject information for individuals’ coefficient estimation, and therefore reduces the
estimation bias and variance for non-zero coefficients.

Furthermore, the above two-subgroup model can be extended to multiple subgroups and even
with additional constraints in practice. We illustrate the extension of three subgroups which allows
positive and negative effects of personalized coefficients. The separation penalty imposed for three
groups is

(6) s(βik, γ
+
k , γ

−
k ) = min

(
|βik|, |βik − γ+k |, |βik − γ

−
k |
)
, s.t. γ+k > 0, γ−k < 0,

which shrinks the coefficient of the individualized predictor either to zero, a positive effect γ+k , or
a negative effect γ−k .

For correlated data structure, we can incorporate correlations of errors to obtain more efficient
estimation ([16]), and introduce within-subject correlations through a weighting matrix Vi to the
weighted squared-loss in the objective function

QN,m(α,β,γ) =

N∑
i=1

(yi − µi(θ))TV −1i (yi − µi(θ)) + λN,m

N∑
i=1

p∑
k=1

s(βik, γk)(7)

= LN,m(α,β) + SλN,m(β,γ),(8)

where Vi = A
1
2
i RiA

1
2
i , Ai is a diagonal matrix of marginal variance of yi and Ri is a working

correlation matrix.

3. Theoretical Results. In this section, we establish the theoretical properties of the proposed
estimator, and the connection to the oracle estimator and the subject-wise least squares estimator.
One unique aspect here is that our theory is established under a general double-divergence frame-
work which assumes that both sample size N and cluster size m go to infinity, and therefore the
number of individualized parameters also diverges.

We introduce some notation as follows. For any symmetric matrix An×n, let λmin(A) and
λmax(A) be the smallest and the largest eigenvalues of A, respectively. For an arbitrary matrix
Am×n(bij), denote ‖A‖2 =

√
λmax(ATA) as its L2-norm, ‖A‖1 = max

1≤j≤n
(
∑m

i=1 |bij |) as its L1-

norm and ‖A‖∞ = max
1≤i≤m

(
∑n

j=1 |bij |) as its L∞-norm. For a vector a = (a1, . . . , an)
′, ‖a‖2 re-

duces to its Euclidean norm and ‖a‖∞ = max
1≤i≤n

(|ai|). Moreover, we denote ‖a‖0 =
∑n

i=1 I{ai 6=0}.

In addition, we define the order between two n × n square matrices as A > B if ∀x ∈ Rn,
xTAx > xTBx holds. Let A � B denote c1A ≤ B ≤ c2A for some constants 0 < c1 ≤ c2 <
∞. Then we define a sequence of m ×m matrices An as An = O(n) if c1nIm ≤ An ≤ c2nIm
when n is large. Moreover, let A ◦B denote the entrywise Hadamard product between two same-
dimension matrices (see details in Appendix A.1), and “⊗” denote the Kronecker product.
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For unbalanced data, we define min(mi) = m and assume mi = O(m) for 1 ≤ i ≤ N . To
simplify the notation, we let mi = m in the following discussion. In addition, without loss of
generality, we consider the two-subpopulation structure with respect to each individualized pre-
dictor. The theory for a structure with more than two subpopulations can be shown similarly. Let
Gk ⊂ {i : 1 ≤ i ≤ N} denote a signal-group index set for the kth individualized predictor such
that βik = γk 6= 0 if i ∈ Gk and βik = 0 otherwise. For any set G, let |G| be the cardinal of G.
Moreover, we denote θ = (β′,α′)′ and let θ0 = ((β0)′, (α0)′)′ be its true value. Let the true value
of βi be β0

i = (β0
i,Ai

′
,β0
i,Aci

′
)′, whereAi andAci denote the index sets such that β0

i,Ai = γ
0
Ai 6= 0

and β0
i,Aci

= 0.
The proposed objective function (7) consists of a loss function LN,m(·) and a penalty function

SλN,m(·), where the squared loss function LN,m(θ) in (8) can accommodate diverging N and m.
Both the oracle estimator and the subject-wise least squares estimator are obtained by minimizing
LN,m(θ), but with different design matrices, where the corresponding quasi-likelihood estimating
equation is

(9) GN,m(θ) =
N∑
i=1

gi(θ) =
N∑
i=1

Ui(θ)
TV −1i (yi − µi(θ)) = 0,

with Ui(θ) = ∂µi(θ)
∂θT

. Due to the linear mean function, Ui(θ) does not depend on unknown pa-
rameters and thus is suppressed asUi in the following, and we also denoteGN,m = GN,m(θ

0) for
ease of notation. In addition, let

DN,m = −
∂GN,m(θ)

∂θT
=

N∑
i=1

UT
i V

−1
i Ui,

HN,m = Cov(GN,m(θ)) =
N∑
i=1

UT
i V

−1
i ΣiV

−1
i Ui,

where Σi = Cov(yi) = A
1
2
i R

0
iA

1
2
i and R0

i is the true correlation matrix. Note that DN,m and
HN,m do not depend on unknown mean regression parameter θ. We require some common regu-
larity conditions

(A1) The unknown parameter θ = (β′,α′)′ belongs to a compact subset B ⊆ Rpθ and its true
value θ0 lies in the interior of B;

(A2) DN,m andHN,m are positive definite when N or m is large.

Note that the standard assumptions of Ri such as converging to a constant positive definite
matrix with eigenvalues bounded away from zero and infinity ([32]) might not be valid in the
proposed framework, since the dimension ofRi increases asm increases. Here we only require the
following general regularity condition forRi andR0

i :

(A3) There exist νl > 0, ν ′l > 0, such that λmin(R0
i ) > νl and λmin(Ri) > ν ′l for all i and m.
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The estimating equation GN,m(θ) contains double summations with the sample size N and
the cluster size m, which both can diverge. Consequently, the standard asymptotic results for M -
estimators are not applicable here even with a fixed number of parameters ([33]). In general, for an
estimator θ̂ obtained by solving the estimating equation (9), under regularity conditions (A1)-(A2),
by Taylor’s expansion, (θ̂ − θ0) = −D−1N,mGN,m. This implies that the consistency of θ̂ relies on
the following condition on the information matrixDN,mH

−1
N,mDN,m,

(Ca) λmin(DN,mH
−1
N,mDN,m)→∞.

In the independent model (R0
i = Ri = Im), DN,mH

−1
N,mDN,m reduces to DN,m as HN,m =

DN,m.
The condition Ca is a standard condition analogous to [33] condition to establish the weak con-

sistency of a fixed-dimensional GEE estimator. However, in contrast to [33]’s setting, the proposed
method results in a diverging dimension of the information matrix which is more complicated.
In addition, to utilize subpopulation information, the convergence rates for estimators of differ-
ent parameters are of great importance and interest in this paper. The following lemma provides a
convergence property for the estimating equation estimator from (9).

LEMMA 1. Under regularity condition (A2), for any δ > 0, there exists a solution θ̂ of (9) such
that

P

(
p
− 1

2
θ ‖H

− 1
2

N,mDN,m(θ̂ − θ0)‖2 > δ

)
< 1

δ2
,

where pθ is the dimension of θ. Moreover, if condition (Ca) holds, we have

P

(
p
− 1

2
θ ‖θ̂ − θ

0)‖2 > δ

)
→ 0.

Lemma 1 presents the consistency result under all settings. It indicates that the estimator’s con-
vergence rate depends on the divergence rate ofDN,mH

−1
N,mDN,m’s eigenvalues.

REMARK 1. Note that Lemma 1 provides consistency under the spectral norm (L2-norm). For
any fixed-dimensional estimator, for example, the oracle estimator and the subject-wise estimator

when N is bounded, the consistency in Lemma 1 is equivalent to P
(
‖θ̂ − θ0)‖∞ > δ

)
→ 0.

However, if pθ is diverging, we need additional conditions to ensure the stronger consistency under
the L∞-norm. More discussion will be provided later regarding the proposed estimator whenN →
∞.

In addition, we assume that a few general regularity conditions hold for the design matrix,

(A4) X̃ij = (X ′ij ,Z
′
ij)
′
(p+q)×1 belongs to a compact set X ⊂ Rp+q for 1 ≤ i ≤ N and 1 ≤ j ≤

m;
(A5) Let X̃i,k denote the kth column of X̃i, assume ‖X̃i·,k‖22 = Op(m) and

∑N
i=1m

−1‖X̃i·,k‖22 =
Op(N), for 1 ≤ k ≤ p+ q;
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(A6) m−1λmin(XT
i Xi) > c3 for any i and 1

Nmλmin

(∑N
i=1Z

T
i (Im −HXi)Zi

)
> c4, where

HXi =Xi(X
T
i Xi)

−1XT
i , for some constants 0 < c3 <∞, 0 < c4 <∞ .

Conditions (A4)-(A6) are regularity conditions which are typically required for the bounded
regressors. However, these are less restrictive than other assumptions, e.g., 1

mX
T
i Xi converges to

a positive constant matrix. Note that condition (A6) allows within-subject invariant covariates, and
is less restrictive since it does not require X̃T

i X̃i to be positive definite.
The regularity conditions (A1)- (A6) are assumed to hold in this section. In Condition (A2)

and Lemma 1, matrices DN,m and HN,m represent a general form according to the estimating
equation (9). For different estimators using the same data, for example, the oracle estimator or the
subject-wise estimator,DN,m andHN,m can be different due to their different formulating.

3.1. Asymptotic results for the oracle estimator with group effects. In the proposed framework,
the oracle estimator assumes that all subpopulation information (Gk, 1 ≤ k ≤ p) with respect to
the individualized predictors is known. This is equivalent to assuming that the true signal sets Ai’s
(1 ≤ i ≤ N ) for all subjects are known.

The individualized parameter βi for each subject is linked to the sub-homogeneous parameter
γ as ωi ◦ γ = βi through an indicator vector ωi = (ωi1, . . . , ωip)

′ ∈ Rp, where ωik = I{i∈Gk} =

I{k∈Ai}. Hence there exists a mapping linking two parameter spaces, which is Rp 7→ RNp : Ωγ =
β, where Ω = (Ω1, . . . ,ΩN )

′ is a Np × p matrix and Ωi = diag(ωi) is a diagonal matrix. We
define LorN,m(α,γ) = LNm(α,β(γ)). By noting that SλN,m(β,γ) = 0 with β = Ωγ and Ω is
known, the oracle estimator can be obtained by minimizing LorN,m(α,γ) as(
((γ̂or)′, α̂or)′

)′
= argmin

α,γ

N∑
i=1

(
yi −Xi(ωi ◦ γ)−Ziα

)T
V −1i

(
yi −Xi(ωi ◦ γ)−Ziα

)
.

The oracle individualized estimator for each subject is obtained by β̂ori = ωi ◦ γ̂or.
Let X̃i = (Xi,Zi) and ω̃i = (ω′i,1

′
q)
′, and X̃or

i = X̃iΩ̃i where Ω̃i = diag(ω̃i). We denote
Hor
N,m =

∑N
i=1(X̃

or
i )TV −1i ΣiV

−1
i X̃or

i ,Dor
N,m =

∑N
i=1(X̃

or
i )TV −1i X̃or

i , and Lemma 1 directly
applies for the oracle estimator by replacingHN,m andDN,m withHor

N,m andDor
N,m, respectively.

Let θ̂or =
(
(γ̂or)′, (α̂or)′

)′
and θ̃0 =

(
(γ0)′, (α0)′

)′
, according to Lemma 1 we have

(10) (Hor
N,m)

− 1
2 (Dor

N,m)(θ̂
or − θ̃0) = Op(1).

Note that the divergence rates of Hor
N,m and Dor

N,m are associated with the subpopulation size
|Gk|’s as N goes to infinity. However, in contrast to other clustering approaches based on an entire
set of coefficient vector βi (e.g., [21]; [18]), the proposed model allows the subgroup partitions
corresponding to different individualized predictors to be different. Therefore the design matrix for
the oracle estimator here cannot be formulated as a block diagonal form, which leads to non-trivial
subgroup effects on divergence rates.
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REMARK 2. A few comments about the eigenvalues of the matrices are worth mentioning. For
two square matrices A and B with the same dimension, AB and BA have the same non-zero
eigenvalues. If A and B are non-singular and A ≤ B, for any matrix C we have CTAC ≤
CTBC, andA−1 ≥ B−1. The proofs of these results are provided in Appendix (A.1).

To get a better understanding of the group effects on the oracle estimator, we reformulate
Dor
N,m =

∑N
i=1 Ω̃T

i X̃
T
i V

−1
i X̃iΩ̃i =

∑N
i=1(Ω̃iΩ̃

T
i )◦(XT

i V
−1
i Xi), where Ω̃T

i Ω̃T
i is a symmetric

square matrix with entries to be zero or one. Suppose

(R1). κlm ≤ λmin(X̃T
i V

−1
i X̃i) ≤ λmax(X̃T

i V
−1
i X̃i) ≤ κum

holds uniformly for any subject i with some positive constant sequences {κlm}∞m=1 and {κum}∞m=1,
then we have κlm

∑N
i=1 Ω̃i ≤Dor

N,m ≤ κum
∑N

i=1 Ω̃i by noting Ω̃2
i = Ω̃i. Under a similar condition

to (R1), we could show that φlm
∑N

i=1 Ω̃i ≤ Hor
N,m ≤ φum

∑N
i=1 Ω̃i for some positive constant

sequences {κlm}∞m=1 and {κum}∞m=1. If
∑N

i=1 Ω̃i is non-singular, then

(11) (φum)
−1(κlm)

2
N∑
i=1

Ω̃i ≤Dor
N,m(H

or
N,m)

−1Dor
N,m ≤ (φlm)

−1(κum)
2
N∑
i=1

Ω̃i.

Let ΛN,m =
∑N

i=1 Ω̃i and note that ΛN,m = diag(N1′q, |G1|, . . . , |Gp|) is a diagonal matrix,
where |Gk|’s (1 ≤ k ≤ p) are signal-subgroup sizes corresponding to p individualized predictors.
It is clear that ΛN,m contains the group effects on estimation. In particular, the group size for the
population-shared parameter is N .

REMARK 3. The condition (R1) could be relaxed by replacing X̃i with Xi since we allow
within-subject invariant covariates, especially for the population-shared predictors. Moreover, if m
is bounded, it is straightforward to show that clm ≤ κlm ≤ κum ≤ cum and c′lm ≤ φlm ≤ φum ≤
c′um hold for some constants 0 < cl ≤ cm < ∞, 0 < c′l ≤ c′m < ∞, which immediately implies
that Dor

N,m � mΛN,m and Hor
N,m � mΛN,m. This conclusion also holds for the independent

model even when m goes to infinity.

Let Nk =
∑

i∈Gk mi = m|Gk| denote the number of observations in group Gk and Na =∑N
i=1mi = mN denote the total number of observations. For the independent error model, we

establish asymptotic normality for the oracle estimators with convergence rates associated to the
sample size N and the cluster size m.

THEOREM 1. Under regularity conditions, suppose R0
i = Ri = Im holds for any i, as either

m→∞ or min
1≤k≤p

(|Gk|)→∞, we have

(Hor
N,m)

1
2

(
{(γ̂or)′, (α̂or)′}′ − {(γ0)′, (α0)′}′

)
→d N

(
0, Ip+q

)
,
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where Hor
N,m �MN,m, and MN,m = diag(N1, . . . , Np︸ ︷︷ ︸

p

, Na, . . . , Na︸ ︷︷ ︸
q

) is a (p+ q)× (p+ q)-dim

diagonal matrix.

Theorem 1 indicates that the convergence rates of the oracle estimator benefit from both increas-
ing N and m, which implies that incorporating subgroup information is able to improve estimation
efficiency as we utilize additional number of observations from each subgroup. In addition, Theo-
rem 1 allows both m and N to go to infinity and has no restriction on their divergence rates.

However, in the correlated model with cluster size m diverging, the analysis of the estimator’s
asymptotic behavior becomes more complicated , since it involves the working correlation matrix
Ri and the unknown true correlation matrix R0

i , which makes it difficult to verify the condition
(Ca) and to figure out the estimators’ convergence rates.

Similar to [33], we consider a sufficient condition which may simplify the verification and the
discussion. Let ηN,m = max

1≤i≤N
{λmax(R−1i R0

i )}, an alternative condition for consistency is

(C∗a) η−1N,mλmin(DN,m)→∞.
The sufficiency of (C∗a) that implies (Ca) is trivial by noting HN,m ≤ ηN,mDN,m. Based on (10),
we present the asymptotic theory for the oracle estimator with the the condition C∗a .

THEOREM 2. Under regularity conditions, for the oracle estimator θ̂or = ((γ̂or)′, (α̂or)′)′,
we have

η
− 1

2
N,m‖(D

or
N,m)

1
2 (θ̂or − θ̃0)‖2 ≤ Op(1),

and if η−1N,mλmin(D
or
N,m)→∞, θ̂or →p θ̃

0.

The proof of Theorem 2 is straightforward by following (11) and condition C∗a . Theorem 2
indicates that the convergence of the estimator depends on the divergence rate of ηN,m andDor

N,m.
Without considering the group effects, the oracle estimator reduces to a fixed-dimensional GEE
estimator by [33] and [1]. Therefore, in the following, we only focus on a few common cases and
some useful conditions.

REMARK 4. For any N and m, according to regularity condition (A3), note that

ηN,m ≤ ( min
1≤i≤N

{λmin(Ri)})−1 max
1≤i≤N

{λmax(R0
i )} ≤ (ν ′l)

−1tr(R0
1) ≤ (ν ′l)

−1m.

If m is bounded, then ηN,m is bounded, which implies that the condition C∗a does not depend on
unknown true correlation structure R0

i . As N → ∞, we have λmin(Dor
N,m) → ∞ regardless of

the choice of working correlationRi. Hence, similar to standard results for the GEE estimator, the
oracle estimator θ̂or has asymptotic normality, although it may not achieve optimal efficiency if
Ri 6= R0

i .

REMARK 5. If m → ∞, ηN,m is not always bounded. For example, if R0
i admits an ex-

changeable correlation structure and we choose working correlation Ri as an identity matrix, we
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have ηN,m = O(m). For any bounded N , Dor
N,m = O(m), which implies that the condition (C∗a)

fails. Although the condition (Ca) may still hold with some constraints on the design matrix to en-
sure consistency (see following Example 1), the convergence rate could be slower than the optimal
rate
√
m and it may not converge to a normal distribution asymptotically ([33]).

We use the following example of a simple linear regression to illustrate some details about the
conditions Ca and C∗a with specific covariates design.

EXAMPLE 1. Consider a subject-wise model with homogeneous effect,

yij = xijβ + εij , i = 1, . . . , N ; j = 1, . . . ,m,

where εi = (εi1, . . . , εim)
′ ∼ N(0, σ2R0) and R0 admits an exchangeable structure with pa-

rameter ρ > 0, xij’s are iid N(µ, 1). For the case of bounded N , without loss of generality,
we assume N = 1. By using an independent working correlation Ri = Im, we have Dm =
xT1 x1 = O(m) and ηm = λmax(R

0) = mρ + 1 − ρ, where x1 = (x11, . . . , x1m)
′. Thus condi-

tion C∗a fails. However, note that R0(ρ) = (1 − ρ)Im + ρ1m1Tm. We have Hm = σ2xT1R
0x1 =

σ2xT1 ((1 − ρ)Im + ρ1m1Tm)x
T
1 = σ2(1 − ρ)xT1 x1 +mρ(m−

1
2
∑m

i=1 x1j)
2 = O(m) + O(m) if

µ = 0, and thus λmin(DmH
−1
m Dm) = O(m) → ∞ as m → ∞. But if µ > 0, it is clear that

mρ(m−
1
2
∑m

i=1 x1j)
2 = O(m2) and thus λmin(DmH

−1
m Dm) = O(1).

COROLLARY 1. Suppose ηN,m ≤ C1 holds uniformly for some constant 0 < C1 < ∞, under
regularity conditions, we have

‖M
1
2
N,m(θ̂

or − θ̃0)‖2 ≤ Op(1),

whereMN,m is defined in Theorem 1.

The condition of uniformly bounded ηN,m in Corollary 1 naturally holds when m is bounded
or for the independent model. However, as m goes to infinity, it implies that either we choose
a working correlation matrix Ri close to the true one, or the correlation is not too strong. The
first case involves a consistent and efficient estimator of the correlation structure, which has been
discussed in [2], [13] and [10]. For the second case, a variety of conditions can be imposed on the
correlation structures to ensure a “weak” dependency.

In the following, we provide a sufficient condition which can be verified easily in practice. For
an arbitrary correlation matrixRm×m(ρij), assume
(Ra) |ρij | ≤ ρ|i−j| for i 6= j and

∑∞
k=1 ρk <∞.

We show in the Appendix that if condition (Ra) holds for the true correlation matrixR0
i , then ηN,m

is bounded uniformly for any working correlation structures. This indicates that R0
i is bounded as

the within-subject correlation decays rapidly as m increases. In practice, a wide family of corre-
lation structures satisfy the conditions (Ra) including the AR-1 and the M-dependent correlation
matrices.
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3.2. Asymptotic results for the proposed estimator. In general, the least squares estimator plays
an important intermediate role in investigating the large sample theory of the penalized estimator.
Hence, prior to presenting the theoretical results for the proposed estimator, we provide the asymp-
totic theory for the subject-wise least squares estimator θ̂Sub = ((β̂Sub)′, (α̂Sub)′)′ obtained by
minimizing LN,m(θ).

Note that, for the proposed estimator and the subject-wise least squares estimator, each term of
UT
i V

−1
i Ui in DN,m does not equal to XT

i V
−1
i Xi , but is a block sparse, matrix as µi does not

contain any other individualized parameter βj for j 6= i. We denote

Ds
N,m =

(
Ds
xx(Np×Np) Ds

xz(Np× q)
Ds
zx(q ×Np) Ds

zz(q × q)

)
,

for the subject-wise estimator, where Ds
xx = bdiag

(
{XT

i V
−1
i Xi}Ni=1

)
and bdiag(·) denotes a

block-diagonal matrix. Similarly, we have Hs
xx = bdiag

(
{XT

i V
−1
i ΣiV

−1
i Xi}Ni=1

)
in Hs

N,m

(see Appendix for details), and bothDs
xx andHs

xx will expand as N increases. Following Lemma
1, we obtain the following result:

LEMMA 2. Under regularity conditions, for any δ > 0 and a ∈ RNp+q, we have

P
(
|aT (θ̂Sub − θ0)|2 > δ

)
≤ δ−2aT (Ds

N,m(H
s
N,m)

−1Ds
N,m)

−1a.

If we choose a as a coordinate indicator for βi in θ, that is, a = (0′q,a
′
1, . . . ,a

′
N )
′, where aj ∈

Rp, 1 ≤ j ≤ N , aj = 1p if j = i or aj = 0p if j 6= i, Lemma 2 implies the following corollary,
which provides a detailed view of the convergence property for each subject-wise estimator β̂Subi

and the population-shared estimator α̂Sub.

COROLLARY 2. Under regularity conditions, for any δ > 0 and individualized estimator β̂Subi ,

P
(
‖β̂Subi − β0

i ‖2 > δ

)
≤ pδ−2ηNmλmin(Ds

Xi
)−1,

whereDs
Xi

=XT
i V

−1
i Xi, i = 1, . . . , N , and for the population-shared estimator α̂Sub,

P
(
‖(α̂Sub −α0)‖2 > δ

)
≤ qδ−2ηNmλmin(Ds

Z)
−1,

whereDs
Z =

∑N
i=1Z

T
i V

−1
i Zi.

Note that the condition ((C)a) requires that m → ∞. In the case of bounded m and diverging
N , it is straightforward that the consistency of any individualized parameter cannot be achieved
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since λmin(Ds
Xi

) does not diverge. Intuitively, the increasing number of subjects does not accumu-
late additional information for the subject-wise parameters. However, the estimator of population-
shared parameter α̂ could still be consistent as N → ∞ by noting that ηNm is bounded and
λmin(D

s
Z)→∞ .

Lemma 2 and Corollary 2 provide consistent estimations under the L2-norm, which depend on
the dimension of parameters. Furthermore, we pursue a stronger uniform consistency with addi-
tional conditions on either the random errors’ distributions or the divergence rates of N and m. In
addition to the basic assumptions of zero mean and finite second moment σ2 for random error εij’s,
let ε∗i = Σ−

1
2εi and denote τ sN,m = λmin(D

s
N,m(H

s
N,m)

−1Ds
N,m)

(Ia) N = o(τ sN,m),

(Ib) (i) ε∗i is a sub-Gaussian vector, that is, P(|aTε∗i | > t) < 2exp(− t2

c2σ‖a‖22
) for any a ∈ Rm

and t > 0, where cσ is a positive constant; and (ii) log(N) = o(τ sN,m).
In the independent model where Σ = Im, the condition (i) in Ib is equivalent to assuming

marginal sub-Gaussian tails for εij’s, which is a standard assumption in high-dimensional model.
Alternatively, if the random errors are assumed to be normally distributed, then the condition (i) in
Ib holds naturally for both independent and correlated models.

Under condition (Ia) or (Ib), we achieve a stronger uniform consistency for the diverging num-
ber of parameters when N →∞ as m→∞.

LEMMA 3. Under regularity conditions, if either condition (Ia) or (Ib) is satisfied, for any
δ > 0, as m→∞, we have

P
(
‖θ̂Sub − θ0‖∞ > δ

)
→ 0.

Theorem 3 indicates that ifN diverges at a limited rate compared tom, or the tails of the random
errors’ distribution decay fast enough, we are able to achieve a stronger consistency under the L∞
norm. Note that the τ sN,m in conditions (Ia) and (Ib) could also be replaced with η−1N,mλmin(D

s
N,m)

analogous to the above discussion, which leads to a sufficient condition.
Based on the above conditions and results, we establish the large sample theory for the proposed

estimator. We first provide insight into the proposed multi-directional separation penalty. Consider
a simple independent linear regression model for one subject with the objective function

(12) Qi,m(βi|γ̂) =
1

2
‖ yi −Xiβi −Ziα ‖22 +λm

p∑
k=1

s(βik, γ̂k),

given an estimator of the sub-homogeneous effects γ̂ = (γ̂1, · · · , γ̂p)′. Therefore, the proposed
penalty function s(·, γ̂k) provides an alternative shrinking direction besides zero. The following
theorem presents the asymptotic property for the individualized estimator obtained by minimizing
(12).
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THEOREM 3. Under regularity conditions, there exists a local minimizer β̂i = (β̂′i,Ai , β̂
′
i,Aci

)′

of (12), if λm → 0, as m → 0, we have β̂i →p β
0
i . In addition, if λm/

√
m → ∞, suppose√

m(γ̂ − γ0) = Op(1), then we have

P(β̂i,Aci = 0)→ 1 and P(β̂i,Ai = γ̂Ai)→ 1.

It is worth noting that the condition of consistency on γ̂ can be relaxed. The proof of Theo-
rem 3 shows that both estimation consistency and selection consistency still hold even if γ̂ is not
consistent. However, if am(γ̂ − γ0) = Op(1) and am/

√
m→∞ hold for some am, then the esti-

mator β̂iAi can achieve a faster convergence rate than
√
m, which is optimal for any subject-wise

model. In the proposed model, γ̂ is estimated over different subjects via the subgrouping and gains
efficiency from increasing number of subjects N .

In another perspective, we investigate group separation as both N and m go to infinity. Denote
Bβ0

i
(r) as a ball in Rp centered at β0

i with a radius r > 0.

LEMMA 4. Suppose either condition (Ia) or (Ib) holds. Under regularity conditions, for any
constant r > 0, as τ sN,m →∞, there exists a local minimizer (α̂T , β̂T , γ̂T )T of QN,m in (7) such
that

P
( ⋂

1≤i≤N
{β̂i ∈ Bβ0

i
(r)}

⋂
{α̂ ∈ Bα0(r)}

⋂
{γ̂ ∈ Bγ0(r)}

)
→ 1.

As both sample size N and cluster size m increase, if N diverges at a limited rate, the speed of
separation over subjects dominates the speed of increasing subjects. Lemma 4 essentially implies
group identification consistency and thus we obtain more information about the correct direction
of the true individualized parameters.

In the spirit of Theorem 3 and Lemma 4, we present the oracle property for the proposed esti-
mator under a general double-divergence setting.

THEOREM 4. Under regularity conditions, suppose either condition (Ia) or (Ib) holds, assum-
ing λN,m

τsN,m
→ 0 and λN,m√

τsN,m
→ ∞, then there exists a local minimizer (α̂T , β̂T , γ̂T )T of QN,m in

(7); as τ sN,m →∞, we have

P
(
{α̂T , β̂T , γ̂T }T = {(α̂or)T , (β̂or)T , (γ̂or)T }T

)
→ 1.

COROLLARY 3 (Uniform selection consistency). Under the same conditions as in Theorem 4,

as τ sN,m →∞, we have P
(⋂N

i=1{Âi = Ai}
)
→ 1.

Theorem 4 indicates that the proposed estimator is the same as the oracle estimator, which
utilizes the most information. In fact, by providing additional shrinking directions, the proposed
model enables us to separate the strong signals from the weak ones. Consequently, we achieve the
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oracle information about the underlying subpopulation structure, which ensures that the proposed
estimator inherits the optimal efficiency from the oracle estimator. From the other perspective,
Corollary 3 also implies subgroup identification consistency.

In addition, in the independent error model, by noting τ sN,m = m, the conditions (Ia) and (Ib)
can be simplified as follows:

(I∗a) N = o(m),
(I∗b ) εij has sub-Gaussian tails and log(N) = o(m).
Hence, we have a simplified result for the independent model.

COROLLARY 4. Under regularity conditions, if Ri = R0
i = Im, suppose either condition

(I∗a) or (I∗b ) holds, assuming λN,m
m → 0 and λN,m√

m
→ ∞, then there exists a local minimizer

(α̂T , β̂T , γ̂T )T of QN,m in (7); as m→∞, we have

P
(
{α̂T , β̂T , γ̂T }T = {(α̂or)T , (β̂or)T , (γ̂or)T }T

)
→ 1.

Combining Theorem 1 and Corollary 4, we have the asymptotic normality of the independent
estimator with the optimal efficiency.

The proofs of the theorems and associated lemmas, corollaries and remarks are provided in the
Supplement A.

4. Computation. Compared to traditional penalized variable selection methods, the proposed
method is more complex to implement since the proposed objective function QN,m(·) in (7) in-
volves an unknown homogeneous effect γ in addition to a non-convex penalty function. We pro-
pose an iterative algorithm as follows to simplify the optimization process.

4.1. Algorithm and convergence property. Note that the first term of the quadratic loss function
in (7) does not involve the subgroup homogeneous effect γ. Therefore we first fix γ to minimize
(7) with respect to β,α. Next, given an estimator of β̂, α̂, we update estimator of γ by minimizing
the grouping loss through the separation penalty term in (7). We iterate these two steps until the
algorithm converges. The specific algorithm is described as follows:

In Algorithm 1, under the homogeneous variance assumption, the Vi in the quadratic loss could
be replaced by a working correlation matrix Ri. Specifically, we recommend one-step moment
estimation for theRi using the subject-wise least squares estimator βi from an independent model.

Note that at Step 3 in Algorithm 1, the objective function (13) is a Lasso-type penalized loss
function, which is convex. We can solve the optimization problem by using existing algorithms
developed for Lasso. In addition, Step 4 can be implemented mimicking K-means algorithm with
one subgroup centered at zero.

The following theorem provides the convergence property of Algorithm 1.

THEOREM 5. For a sequence of estimators β̂(n), α̂(n), γ̂(n) obtained in Algorithm 1, the ob-
jective function QN,m(β̂

(n), α̂(n), γ̂(n)) in (7) is non-increasing as the number of iterations m
increases, which leads to the convergence of β̂(n), α̂(n) and γ̂(n).
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Algorithm 1
Step 1. (Initialization) Start with initial estimators: β̂(0), α̂(0), e.g. the OLS or Lasso estimators.
Step 2. Estimate an initial value of γ by γ̂(0) = argminγ

∑N
i=1

∑p
k=1 min(|β̂(0)

ik |, |β̂
(0)
ik − γk|).

Step 3. (Penalized Regression) At the nth iteration, given γ̂(n−1), update β̂(n), α̂(n) via minimizing the objective
function:

(13)
1

2

N∑
i=1

(
yi − µi(βi,α)

)T
V −1
i

(
yi − µi(βi,α)

)
+ λN,m

N∑
i=1

p∑
k=1

s(n−1)(βik, γ̂k
(n−1)),

where s(n−1)(βik, γk) = (1− ξ̂(n−1)
ik )|βik|+ ξ̂

(n−1)
ik |βik − γk| , ξ̂(n−1)

ik = I(|β̂(n−1)
ik | > |β̂(n−1)

ik − γk|).

Step 4. (Grouping) Given α̂(n), β̂(n), update γ̂(n) = argmin
γ

N∑
i=1

p∑
k=1

min(|β̂(n)
ik |, |β̂

(n)
ik − γk|).

Step 5. (Stopping Criterion) Iterate Step 3 and Step 4 until ‖ β̂(n) − β̂(n−1) ‖2 + ‖ α̂(n) − α̂(n−1) ‖2 is less than a
small predetermined threshold value.

However, the iterative estimator may converge to a local minimizer since the objective function
is non-convex. Multiple initial values are recommended so that the optimum value can be identified.
In fact, the proposed piece-wise convex penalty function produces local minimums corresponding
to different subgroups. However, not all individuals are sensitive to initial values except the corre-
sponding coefficients close to boundary. Heuristically, if λN,m/γk is small, implying that the true
effects γ are strong, then the coefficient estimators for these individuals are stable. In addition, we
recommend a step-wise tuning in practice, that is, we initialize the tuning parameter by a very small
value and increase it to the specified value as the number of iterations increases.

4.2. Tuning parameter and select number of subgroups. In this paper, we apply the general-
ized cross-validation (GCV) method to select an appropriate tuning parameter λN,m. The GCV
can be regarded as an approximation of leave-one-out cross-validation (CV) and thus provides an
approximately unbiased estimator of the prediction error ([21]). The GCV is defined as

GCV (df) =
RSS

(N0 − df)2
=

∑N
i=1

∑mi
j=1(yij − ŷij)2

(N0 − df)2
,

where N0 =
∑N

i=1mi is the total sample size anddf is the degrees of freedom used in estimating
the ŷij’s. In our setting, the degrees of freedom cannot be considered as the number of non-zero
parameters, since some of the β̂ik’s are shrunk to the exact sub-homogeneous effect γ̂k. [21] sug-
gest the generalized degrees of freedom (GDF) which is computationally costly. Alternatively, we
define the df as the number of homogeneous effects plus the number of remaining non-zero coeffi-
cient estimators which are not equal to γ̂k’s. To select a tuning parameter λN,m, we search from a
sequence of grid points which minimizes the GCV.

The proposed method allows a multiple subgroups case as defined in (3), and the number of
subgroups is usually unknown. In practice, we could specify the number of the subgroups according
to known scientific information or a particular target such as exploring the positive effect, the
negative effect and no effect.
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In practice, we can select the number of subgroups based on a data-driven approach. One ap-
proach is to adopt the idea of the jump statistic ([26]) with a K-means clustering based on some
pre-estimators, e.g., the subject-wise least squares estimator. This is easy to implement but might
not be reliable, as in the two-step procedure, the pre-estimators are treated as observed responses
which do not change as the number of subgroups changes.

Here we provide the modified Bayesian Information Criterion (BIC, [31]) for high-dimensional
data settings to select the number of subgroups. We use one individualized covariate as an illustra-
tion. The number of subgroups Gk is selected by minimizing

(14) BIC(Gk) = log

( N∑
i=1

m∑
j=1

(yij − µ̂ij(Gk))2/(mN)

)
+ bN,m

log(mN)

mN
(Gk + q),

where bN,m is a positive number and depends on N and m. When bN,m = 1, the modified BIC
reduces to the traditional BIC ([23]). For the high-dimensional setting, we follow [30] with bN,m =
c log(log(pθ)), where pθ = N + q and c = 2. To extend to more than one individualized covariate,
we adopt a strategy of selecting the number of subgroups for one predictor while fixing other
individualized coefficients with the subject-wise least squares estimators.

5. Numerical Study. In this section, we provide simulation studies to investigate the numeri-
cal performance of the proposed method in finite samples. Specifically, we compare the proposed
model with the subject-wise model, the homogeneous model and five other regularization models
in Section 5.1. In addition, we demonstrate the benefit of incorporating within-subject correlations.
In Section 5.2, we investigate the subgroup number selection of the proposed model and test the
robustness against model misspecification.

5.1. Individualized regression with correct-specified subgroup numbers. In this simulation study,
we simulate two cases to evaluate the proposed model when the number of subgroups is correctly
specified. In the first case, we consider a heterogeneous regression model with one individualized
variable and two population-shared variables:

(15) yij = α0 + α1zij1 + α2zij2 + βixij + εij , i = 1, . . . , N, j = 1, . . . ,m.

We set the sample size N = 40, 100, and the cluster size m = 10, 20. The individualized
coefficients are set as β = (β1, . . . , βN )

′ = (γ, . . . , γ︸ ︷︷ ︸
N/2

, 0, . . . , 0︸ ︷︷ ︸
N/2

)′, where γ is the true subgroup

homogeneous effect chosen as 1 or 2, and the population parameters are α′ = (α0, α1, α2) =
(1, 1, 1). The covariates zij1, zij2 and xij are generated from N(0, 1). The random error εij’s are
independently generated from N(0, 1).

We compare the performance of the proposed model (MDSP) with five regularized variable
selection approaches, namely, the Lasso ([27]) implemented by R package glmnet (version 2.0-2)
([7]), the adaptive Lasso (AdapL) ([37]) solved by R package parcor (version 0.2-6) ([15]), the
SCAD ([6]) and the MCP ([35]) implemented by R package ncvreg (version 3.5-1) ([4]), and the
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fused Lasso (FusedL) ([29]) solved by R package penalized (version 0.9-50) ([8]). Note that there
areN+3 variables andNm observations for the above five conventional regularization models. For
the fused Lasso, we order estimators of the individualized coefficients based on the least squares
estimation as the fused Lasso only imposes L1-penalties on adjacent coefficients. In addition, we
also compare two non-variable-selection models, namely, the heterogeneous model (Sub) assuming
subject-wise coefficients βi’s, and the homogeneous model (Homo) assuming homogeneous effect
βi = βh (i = 1, . . . , N ). Both of them are based on the least squares estimators.

To evaluate the performance of these approaches on individual variable selection and prediction,
we calculate the correct variable selection rate (CVSR), sensitivity and specificity, and the root
mean square error (RMSE) for coefficient estimators, where the correct variable selection rate
(CVSR) of the individualized variable is defined as the rate of correctly classifying βi’s (i =
1, . . . , N ) to be either zero or non-zero among all individuals, and sensitivity and specificity are the
true positive rate P (β̂i 6= 0|βi 6= 0) and the true negative rate P (β̂i = 0|βi = 0), respectively. The
root mean square error is defined as ‖β̂ − β0‖2, where β0 = (β0i1, . . . , β

0
iN )
′ are the true values.

Table 1 provides the mean of root mean square errors (RMSE) based on 100 simulations. Figures
3 and 4 are the boxplots of the RMSE for all approaches. The proposed method has the smallest
RMSE in all settings, which has an improvement of at least 20% (m = 10) and 71% (m = 20)
compared to other methods for both sample sizes N = 40, 100 when γ = 1. The improvement is
more significant and reaches 150% (m = 10) and 250% (m = 20) when subgroups are separated
well (γ = 2). This is because that the proposed method is able to borrow strength from different
individuals within the same subgroup in estimating individualized coefficients.

The CVSR, sensitivity and specificity for the above simulations are summarized in Table 3.
The proposed method (MDSP) clearly outperforms the other conventional penalization approaches
in terms of the highest CVSR, especially when the subgroup homogeneous effect is large (γ =
2). Although all models achieve similar rates on sensitivity, the proposed model leads to higher
specificity rates. Figures 5–8 provide the boxplots of CVSR, sensitivity and specificity for all of
the variable selection approaches.

In addition, Table 2 summarizes the estimators and the empirical standard errors of the subgroup
homogeneous effects γ from the proposed model. Specifically, the estimators γ̂’s are consistent as
the cluster sizem increases. The estimators of the population-shared coefficients α̂ are quite similar
for all methods and thus are omitted here.

In the second simulation case, we consider a subject-wise model of two individualized predictors
with serial correlations:

yij = βi1xij1 + βi2xij2 + εij , i = 1, . . . , N, j = 1, . . . ,m.

The individualized coefficients β1 = (β11, . . . , βN1)
′ and β2 = (β12, . . . , βN2)

′ are

β1 = (γ1, . . . , γ1︸ ︷︷ ︸
N/2

, 0, . . . , 0︸ ︷︷ ︸
N/2

), β2 = (0, . . . , 0︸ ︷︷ ︸
N/2

, γ2, . . . , γ2︸ ︷︷ ︸
N/2

),

where γ1 = 1 and γ2 = −2. We choose the sample size N = 20, 80 and the cluster size
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m = 10, 20. The covariates xij1 and xij2 are generated from N(0, 1). The random error ε′i =
(εi1, . . . , εm)’s are generated from a multivariate normal distribution with mean 0 and covariance
σ2R(ρ), whereR(ρ) is the correlation matrix which has either an AR-1 or exchangeable structure.
We set σ = 1 and ρ = 0.5.

We compare the performance of the proposed model using different working correlation struc-
tures to the independent model. Table 4 summarizes the average root mean square errors (RMSE)
based on 100 simulations under various settings. Overall, the proposed model utilizing within-
subject correlation information achieves smaller RMSE than the independent model. In particular,
if the correct working structure is correctly specified, the RMSE can be reduced at least 40% com-
pared to the one obtained using independent structure.

5.2. Subgroup number selection and robustness. In this simulation study, we first investigate
the performance of the data-driven method discussed in Section 4 to select the number of shrink-
age centers (subgroups). We compared the proposed method (MDSP) based on BIC-type criterion
with a two-stage approach (OLSK) which employs the gap statistic ([28]) to choose the number
of subgroups for the K-means algorithm based on the least squares estimators of individualized
coefficients. The OLSK method is implemented by R package cluster (version 2.0.5) ([19]). The
number of bootstrap samples in calculating the gap statistic is set as 100.

We generate the data following (15) under various scenarios. Scenario 1 has only a noise indi-
vidualized variable (βi = 0, i = 1, . . . , N ), while Scenarios 2 and 3 have two (βi = 0, 1) or three
subgroups (βi = 0, 2, 5) for one individualized predictor, respectively, and Scenario 4 assumes a
model of two individualized predictors with two (βi1 = 0, 2) or three (βi2 = 0,−2, 1) subgroups,
respectively. The subgroup size in each scenario is balanced.

Table 5 provides the mean estimated number of subgroups and proportion of selecting the correct
number of subgroups based on 100 replications. Overall, the proposed method is able to select
the correct number of subgroup with more than 85% probability over all scenarios with different
sample sizes (N = 60, 120) and cluster sizes (m = 5, 10, 20). The chance of selecting the correct
number of subgroups increases as the cluster size increases. In addition, the proposed method
consistently outperforms the two-stage OLSK method, especially when the cluster size is small
(m = 5).

Next we test the robustness of the proposed model when the number of subgroups is misspeci-
fied. We generate the data as in model (15) under two scenarios: one has a population homogeneous
predictor (βi = γ = 2, i = 1, . . . , N ) and the other generates an individualized variable with three
subgroups (γ0 = 0, γ1 = −3, , γ2 = 1) with balanced size. We set the sample size N = 60
and the cluster size m = 10. For both cases, we fit the proposed model assuming two subgroups
(βi = 0, γ).

Table 6 provides the mean of RMSE and CVSR for the proposed method, the subject-wise model
and the five other regularized methods described in Section 5.1. In general, the proposed method
is robust against the misspecification of subgroup numbers. In the case of homogeneous effect, all
models perform similarly in selecting the true variable for all individuals. However, the proposed
method has the smallest RMSE among all methods with a 170% reduction. In addition, in the case
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when there are fewer assumed subgroups than is true, the proposed method still has the best correct
variable selection rate, and reduces the RMSE at least 14% compared to the other methods.

Figure 9 illustrates the estimation of individualized coefficients from the proposed model. In
the setting where the true effect is homogeneous with individuals separate from zero, all subjects
are identified correctly as one group, and are shrunk towards a non-zero group. In the scenario
with three true subgroups, the subgroup with a relatively stronger signal (γ1 = −3) is successfully
identified, and therefore we gain more estimation efficiency for the individuals in this subgroup.
Moreover, the subgroup with the weaker effect (γ2 = 1) is shrunk towards zero since it is the
only other shrinking direction we provide, where the proposed estimator is equivalent to the Lasso
estimator.

6. Real Data Application. In this section, we illustrate the proposed individualized variable
selection method using the Harvard longitudinal AIDS clinical trial group (ACTG) data. One of
the goals from this study is to test the treatment effect of Zidovudine on CD4 cell counts (e.g., [5]).
The 140 patients from this study are repeated measured over 14 time points with a missing rate of
8.5% and maintain CD4 counts above 50 at the baseline measures.

The demographic information includes age and gender for each patient. We denote ZDV=1 if
the patient receives the treatment and ZDV=0 if the patient is in the control group. Let yit be the
CD4 counts for the ith patient at time t. Each individuals’ CD4 measurements are standardized by
within-individual standard deviation to achieve a uniform scale. A marginal model to incorporate
time, treatment, interaction of time and treatment, age and gender is provided as follows:

(16) yit = β0 + βt ∗ Time+ βz ∗ZDV + βzt ∗ZDV ∗ Time+ βa ∗Age+ βg ∗Gender+ εit.

We are particularly interested in the treatment effect of Zidovudine over time. The standard analysis
concludes that the marginal treatment effect over time β̂zt is not significant with p-value= 0.113.

However, if we examine the time trend of CD4 counts from individuals, there exist subgroups
for the treatment group. Given the treatment ZDV, some individuals’ CD4 counts are more stable
over time while some patients’ CD4 counts decrease more rapidly than the average of the control
group over time. This could be interpreted that some patients respond more positively, while some
respond more negatively, and the remaining patients have no effects from receiving ZDV treatment
compared to the average effect of the control group.

Clearly, the subgroup differences are washed out if we apply the above marginal model in (16).
Therefore, we employ an individualized regression model which accommodates the personalized
treatment effects ZDV over time as the following:

yit = β0 + βt ∗ Time+ βz ∗ ZDV + βizt ∗ ZDV ∗ Time+ βa ∗Age+ βg ∗Gender + εit.

We assume for the βizt coefficient, that it falls into three subgroups (βizt = γ+ > 0, βizt =
γ− < 0 or βizt = 0). Note that for patients in the control group, we set βizt = 0 since their
personalized effects corresponding to the treatment are unobserved. Since the treatment variable
is constant over time, we compare our proposed method with the subject-wise Lasso model, the
standard population homogeneous model, the random-effects model assuming a random slope of
ZDV and time interaction and the fused Lasso model.



22 X. TANG AND A. QU

We choose observations at times t = 1, . . . , 12 as the training set and the remaining observations
at t = 13, 14 as the testing set. On the testing set, we calculate the root mean square prediction
error for each individual at t = 13, 14, where the median of the individuals’ prediction errors is
reported. Table 7 shows that the proposed method has the smallest median prediction error among
all methods. For example, the proposed method has 16.0%, 13.9% and 18.1% improvement in
prediction accuracy compared to the marginal model, the random-effects model and the Lasso
model, respectively.

Furthermore, Figure 10 shows the individuals corresponding to no effect, positive effect and
negative effect in the treatment group identified by the Lasso method and the proposed method
respectively. The proposed method is able to detect more individuals with significant responses to
the treatment than the Lasso method does, as the proposed separation penalty enables us to shrink
the estimated coefficients in multiple directions.

To examine whether subgrouping provides more informative treatment effect over time, we refit
a marginal regression model in (16) for each subgroup, where each subgroup consists of the cor-
responding individuals identified in the treatment group and all individuals in the control group.
Table 8 illustrates that the treatment effect over time from the positive-effect subgroup selected
by the Lasso method is still not significant, while the negative-effect subgroup is significant with
p-value of 0.02. In contrast, the proposed method identifies both positive and negative subgroups
with significant p-values of 0.02 and 0.00 respectively.

7. Discussion. In this paper, we consider an individualized regression model where both the
number of subjects and the number of subject-wise repeated measurements increase. To select dif-
ferent important predictors for different individuals, we propose a novel multi-directional separa-
tion penalty to implement individualized variable selection. In addition, by utilizing subpopulation
structure, we induce within-subgroup homogeneous effects and borrow cross-subject information
to achieve a good balance of parsimonious modeling and heterogeneous interpretation.

In contrast to the conventional penalized variable selection approaches, the proposed method
provides multiple shrinking directions to overcome estimation bias from L1-regularization, where
the alternative shrinking directions in addition to zero are automatically selected through group-
ing of subjects with similar effects from predictors. Consequently, for any subject, the proposed
model achieves estimation consistency and selection consistency, even with the L1-penalty on each
shrinking direction.

In addition, compared to subject-wise modeling, the proposed method is able to achieve the
population-wise oracle property when the number of the individualized parameters increases along
with the sample size. Consequently, the proposed estimator inherits the optimal convergence rate
from the oracle estimator due to increasing sizes of within-subject measurements and subgroups.
Moreover, by incorporating within-subject serial correlation, the proposed method is able to gain
more efficiency than the model assuming independence.

In this paper, the individualized and the population-shared predictors are pre-specified in the
model. Therefore it is also essential to develop a method to identify individualized variables from
population-shared variables prior to applying the proposed method. One possible solution is to
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impose an additional penalty on sub-homogeneous effects. In addition, it is worth investigating the
possibility of linking subgroup membership to population-shared covariates, such as demographic
information, which could be useful for making predictions for new subjects without much prior
information.

SUPPLEMENTARY MATERIAL

Supplement A: Supplement to “Individualized Multi-directional Variable Selection”:
(doi: COMPLETED BY THE TYPESETTER). Due to space constraints, we relegate technical
details of the proofs to the supplement.
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TABLE 1
The average root mean square error (RMSE) of the proposed MDSP model compared with other

approaches based on 100 simulations, with sample size N = 40, 100, cluster size m = 10, 20, and
subgroup homogeneous effect γ = 1, 2, where Sub, Homo, FusedL, Lasso, AdapL, SCAD and MCP stand
for subject-wise model, homogeneous model, the fused Lasso ([29]), the Lasso ([27]), the adaptive Lasso
([37]), the SCAD([6]) and the MCP ([35]) regularization models, respectively. The number of subgroups

(two) is correctly specified in the proposed model.

Sample Cluster Methods
Size (N) Size(m) MDSP Sub Homo FusedL Lasso AdapL SCAD MCP

γ = 1

40
10 0.267 0.349 0.504 0.323 0.439 0.339 0.344 0.350
20 0.120 0.232 0.502 0.206 0.298 0.207 0.201 0.201

100
10 0.262 0.350 0.501 0.319 0.394 0.334 0.335 0.345
20 0.119 0.233 0.501 0.210 0.271 0.208 0.205 0.206

γ = 2

40
10 0.122 0.349 1.004 0.317 0.408 0.309 0.311 0.309
20 0.048 0.232 1.002 0.204 0.293 0.181 0.168 0.167

100
10 0.113 0.350 1.001 0.318 0.387 0.305 0.300 0.299
20 0.037 0.233 1.001 0.210 0.274 0.208 0.206 0.206

TABLE 2
The average RMSE of the estimated subgroup homogeneous effect γ̂ from the proposed model based on 100 simulations

(empirical standard errors in parenthesis), with sample size N = 40, 100, cluster size m = 10, 20.

Homogeneous N=40 N=100
Effect T = 10 T = 20 T = 10 T = 20

γ = 1 1.03(0.08) 1.00(0.05) 1.02(0.05) 1.00(0.03)
γ = 2 2.01(0.07) 2.00(0.05) 2.00(0.05) 2.00(0.03)
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TABLE 3
The average correct variable selection rate (CVSR), sensitivity and specificity of the proposed MDSP model compared
with other approaches based on 100 simulations, with sample size N = 40, 100, cluster size m = 10, 20, and subgroup
homogeneous effect γ = 1, 2, where Sub, Homo, FusedL, Lasso, AdapL, SCAD and MCP stand for subject-wise model,
homogeneous model, the fused Lasso ([29]), the Lasso ([27]), the adaptive Lasso ([37]), the SCAD([6]) and the MCP
([35]) regularization models, respectively. The number of subgroups (two) is correctly specified in the proposed model.

Variable Sample Cluster Methods
Selection Size (N) Size(m) MDSP FusedL Lasso AdapL SCAD MCP

γ = 1

CVSR
40

10 0.916 0.692 0.876 0.820 0.717 0.741
20 0.970 0.678 0.924 0.869 0.778 0.829

100
10 0.909 0.673 0.862 0.840 0.718 0.754
20 0.963 0.682 0.890 0.888 0.773 0.833

Sensitivity
40

10 0.942 0.978 0.898 0.943 0.975 0.966
20 0.985 1.000 0.990 0.997 0.999 0.999

100
10 0.946 0.986 0.917 0.941 0.974 0.967
20 0.990 0.999 0.993 0.994 0.999 0.997

Specificity
40

10 0.909 0.406 0.853 0.696 0.460 0.517
20 0.956 0.356 0.857 0.742 0.557 0.659

100
10 0.886 0.360 0.807 0.739 0.462 0.542
20 0.942 0.364 0.787 0.782 0.547 0.669

γ = 2

CVSR
40

10 0.959 0.639 0.886 0.884 0.800 0.852
20 0.972 0.670 0.928 0.940 0.908 0.953

100
10 0.940 0.648 0.868 0.898 0.809 0.871
20 0.965 0.682 0.890 0.888 0.773 0.832

Sensitivity
40

10 0.997 0.996 0.997 0.998 1.000 0.998
20 1.000 1.000 1.000 1.000 1.000 1.000

100
10 0.998 0.997 0.998 0.998 0.999 0.999
20 1.000 0.999 0.993 0.994 0.999 0.997

Specificity
40

10 0.922 0.282 0.774 0.771 0.602 0.705
20 0.945 0.340 0.856 0.880 0.816 0.906

100
10 0.882 0.299 0.738 0.797 0.620 0.744
20 0.930 0.365 0.787 0.782 0.546 0.668
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TABLE 4
The average root mean square error (RMSE) of the proposed MDSP model with different working correlation

structures based on 100 simulations, including AR-1 (βAR1), exchangeable (βEx) and independent (βInd) models.
The true structures for the within-subject serial correlation are AR-1 or exchangeable, and correlation parameter

ρ = 0.5, sample size N = 20, 80, cluster size m = 10, 20.

True Cluster N = 20 N = 80
Correlation size (m) βAR1 βEx βInd βAR1 βEx βInd

Exch
10 0.209 0.165 0.265 0.193 0.110 0.258
20 0.072 0.053 0.078 0.067 0.051 0.076

AR-1
10 0.182 0.230 0.258 0.183 0.205 0.256
20 0.091 0.121 0.132 0.089 0.112 0.130

TABLE 5
The mean of identified subgroup numbers of the proposed model compared with the two-stage OLSK method based on

100 simulations, with sample size N = 60, 120, cluster size m = 5, 10, 20. The first three scenarios contain one
individualized predictor (p = 1) of one, two and three groups, respectively. The last scenario contains two

individualized predictors (p = 2), one with two groups and the other with three groups. The subgroup sizes are equal in
each scenario. The subgroup homogeneous effects are listed as possible values for βi in the table.

Number of individualized variables p = 1 p = 2
Sample Cluster βi = 0 βi = 0, 1 βi = 0, 2, 5 β1i = 0, 2 β2i = −2, 0, 1
Size
(N)

Size(m) MDSP OLSK MDSP OLSK MDSP OLSK MDSP OLSK MDSP OLSK

60
5 1.0(100) 1.0(100) 2.0(95) 1.0(2) 2.9(88) 2.5(68) 2.0(100) 1.5(52) 3.2(85) 1.2(0)
10 1.0(100) 1.0(100) 2.0(100) 1.3(26) 3.1(90) 2.7(74) 2.0(100) 2.0(100) 3.1(90) 2.4(44)
20 1.0(100) 1.0(100) 2.0(100) 2.0(100) 3.1(92) 2.8(78) 2.0(100) 2.0(100) 3.0(100) 2.8(80)

120
5 1.0(100) 1.0(100) 2.0(96) 1.0(2) 3.2(86) 2.8(82) 2.0(100) 1.7(72) 3.1(90) 1.4(0)
10 1.0(100) 1.0(100) 2.0(100) 1.2(24) 3.1(92) 2.9(86) 2.0(100) 2.0(100) 3.1(90) 2.6(64)
20 1.0(100) 1.0(100) 2.0(100) 2.0(100) 3.0(98) 2.9(96) 2.0(100) 2.0(100) 3.1(92) 2.78(78)
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TABLE 6
The average RMSE and CVSR of the proposed MDSP model compared to the subject-wise model (Sub), the fused Lasso

(FusedL), the Lasso, the adaptive Lasso (Adapl), the SCAD and the MCP penalization models, based on 100
simulations with sample size N = 60 and cluster size m = 10. The first case contains a population homogeneous
effect (Gk = 1) and the second case contains an individualized predictor of three subgroups (Gk = 3) with equal

subgroup size. In both cases the proposed model assumes two subgroups. The estimated subgroup homogeneous effects
from the proposed model are γ̂ = 2.01(0.06) and γ̂ = −2.99(0.06) in these two cases (with empirical standard errors

in parenthesis), respectively.

Case MDSP Sub FusedL Lasso AdapL SCAD MCP
Gk = 1 RMSE 0.115 0.346 0.319 0.414 0.373 0.346 0.345
(βi = 2) CVSR 0.996 - 0.993 0.994 0.992 0.995 0.996

Gk = 3 RMSE 0.277 0.349 0.315 0.410 0.335 0.337 0.338
(βi = −3, 0, 1) CVSR 0.901 - 0.748 0.877 0.902 0.816 0.817

TABLE 7
The estimated coefficients of the population model, the random-effects model, the L1-penalty model and the proposed

model with corresponding median prediction errors (MPE) for the ACTG data. The individualized coefficient
estimators β̂izt’s in the Lasso model, the fused Lasso (fusedL) model and the proposed (MDSP) model are not listed.

Model β̂0 β̂t β̂z β̂a β̂g β̂zt γ̂+ γ̂− MPE
Population 3.09 −0.68 −0.54 0.01 −0.01 −0.24 - - 1.67

Random-effects 2.56 −0.68 −0.57 0.02 −0.01 −0.29 - - 1.70
Lasso 3.09 −0.76 −0.54 0.01 −0.01 - - - 1.64
fusedL 3.05 −0.72 −0.52 0.01 −0.01 - - - 1.62
MDSP 3.10 −0.68 −0.56 0.01 −0.01 - 0.62 −0.60 1.44

TABLE 8
The treatment effect estimators within each subgroup model (zero-effect group: β0

zt, negative-effect group: β−zt and
positive-effect group β+

zt) as well as the standard errors (s.e.) and the p-values. Each subgroup consists of the
corresponding individuals in the treatment group identified by the Lasso model or the proposed model (MDSP) as well

as all the individuals in the control group. The proportion of individuals with the treatment classified into each
subgroup is provided.

Model Estimates s.e. p-value Proportion
β̂0
zt −0.24 0.17 0.14 0.75

Lasso β̂−zt −0.73 0.31 0.02 0.18

β̂+
zt 0.82 0.48 0.10 0.07

β̂0
zt −0.04 0.30 0.89 0.20

MDSP β̂−zt −0.68 0.08 0.00 0.64

β̂+
zt 0.72 0.33 0.02 0.16
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Figure 3: The boxplot of RMSE of the proposed MDSP model compared with other approaches based on
100 simulations, with sample size N = 40, 100, cluster size m = 10, 20, where homogeneous effect γ = 1.
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Figure 4: The boxplot of RMSE of the proposed MDSP model compared with other approaches based on
100 simulations, with sample size N = 40, 100, cluster size m = 10, 20, where homogeneous effect γ = 2.
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Figure 5: The boxplots of CVSR, sensitivity and specificity for all regularization approaches based on 100
simulations, with cluster size m = 10, 20, where homogeneous effect γ = 1 and sample size N = 40.
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Figure 6: The boxplots of CVSR, sensitivity and specificity for all regularization approaches based on 100
simulations, with cluster size m = 10, 20, where homogeneous effect γ = 1 and sample size N = 100.
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Figure 7: The boxplots of CVSR, sensitivity and specificity for all regularization approaches based on 100
simulations, with cluster size m = 10, 20, where homogeneous effect γ = 2 and sample size N = 40.
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Figure 8: The boxplots of CVSR, sensitivity and specificity for all regularization approaches based on 100
simulations, with cluster size m = 10, 20, where homogeneous effect γ = 2 and sample size N = 100.
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Figure 9: The subject-wise least squares estimator and the proposed estimator assuming two subgroups
(including a zero group) for individualized parameters in two scenarios: a homogeneous group, and three
subgroups, where the sample size N = 60 and cluster size m = 10.
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Figure 10: The different individuals corresponding to no effect, positive effect and negative effect in the
treatment group selected by the Lasso model and the proposed method.
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